Handbook Of Small Modular Nuclear Reactors
Download File ===> https://fancli.com/2tI0XL
Dr. Carelli retired from Westinghouse in 2012 as Chief Scientist for Research & Technology where he was responsible for identification and implementation of advanced and revolutionary nuclear technologies. Dr. Carelli, who held a series of management posts in advanced science and technologies at Westinghouse, is recognized as a worldwide expert in the design of advanced nuclear reactors. While at Westinghouse, he led an international team of experts spanning 10 countries to develop the International Reactor Innovative and Secure (IRIS) SMR design. He is a graduate of the University of Pisa in Italy with a Ph.D. degree in Nuclear Engineering.
The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies.
Small and medium-sized or modular reactors are an option to fulfil the need for flexible power generation for a wider range of users and applications. Small modular reactors, deployable either as single or multi-module plant, offer the possibility to combine nuclear with alternative energy sources, including renewables.
Global interest in small and medium sized or modular reactors has been increasing due to their ability to meet the need for flexible power generation for a wider range of users and applications and replace ageing fossil fuel-fired power plants. They also display an enhanced safety performance through inherent and passive safety features, offer better upfront capital cost affordability and are suitable for cogeneration and non-electric applications. In addition, they offer options for remote regions with less developed infrastructures and the possibility for synergetic hybrid energy systems that combine nuclear and alternate energy sources, including renewables.
Many Member States are focusing on the development of small modular reactors, which are defined as advanced reactors that produce electricity of up to 300 MW(e) per module. These reactors have advanced engineered features, are deployable either as a single or multi-module plant, and are designed to be built in factories and shipped to utilities for installation as demand arises.
Building upon the success of the first edition, the Nuclear Engineering Handbook, Second Edition, provides a comprehensive, up-to-date overview of nuclear power engineering. Consisting of chapters written by leading experts, this volume spans a wide range of topics in the areas of nuclear power reactor design and operation, nuclear fuel cycles, and radiation detection. Plant safety issues are addressed, and the economics of nuclear power generation in the 21st century are presented. The Second Edition also includes full coverage of Generation IV reactor designs, and new information on MRS technologies, small modular reactors, and fast reactors.
Small modular reactors (SMRs) are an advanced, safe type of nuclear reactor technology that are suitable for small and medium sized applications including both power and heat generation. In particular, their use as individual units or in combination to scale-up capacity offer benefits in terms of siting, installation, operation, lifecycle and economics in comparison to the development of larger nuclear plant for centralised electricity power grids. Interest has increased in the research and development of SMRs for both developing countries as well as such additional cogeneration options as industrial/chemical process heat, desalination and district heating, and hydrogen production. This book reviews key issues in their development as well as international R&D in the field. Gives an overview of small modular reactor technologyReviews the design characteristics of integral pressurized water reactors and focuses on reactor core and fuel technologies, key reactor system components, instrumentation and control, human-system interfaces and safetyConsiders the economics, financing, licensing, construction methods and hybrid energy systems of small modular reactorsDescribes SMR development activities worldwide, and concludes with a discussion of how SMR deployment can contribute to the growth of developing countries
The IEA says innovative nuclear power technologies - such as small modular reactors - could offer shorter construction and approval times for new capacity, as well as expanding opportunities for nuclear power beyond electricity, for example for heat and hydrogen production. However, it says "innovation efforts need to be accelerated to improve their prospects."
Truth: Nuclear-generated electricity powers electric trains and subway cars as well as autos today. It has also been used in propelling ships for more than 50 years. That use can be increased since it has been restricted by unofficial policy to military vessels and ice breakers. In the near-term, nuclear power can provide electricity for expanded mass-transit and plug-in hybrid cars. Small modular reactors can provide power to islands like Hawaii, Puerto Rico, Nantucket and Guam that currently run their electrical grids on imported oil. In the longer-term, nuclear power can directly reduce our dependence on foreign oil by producing hydrogen for use in fuel cells and synthetic liquid fuels. 781b155fdc